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Abstract

Can Multimodal Large Language Models (MLLMs) de-
velop an intuitive number sense similar to humans? Tar-
geting this problem, we introduce Visual Number Bench-
mark (VisNumBench) to evaluate the number sense abil-
ities of MLLMs across a wide range of visual numeri-
cal tasks. VisNumBench consists of about 1,900 multiple-
choice question-answer pairs derived from both synthetic
and real-world visual data, covering seven visual numeri-
cal attributes and four types of visual numerical estimation
tasks. Our experiments on VisNumBench led to the follow-
ing key findings: (i) The 17 MLLMs we tested—including
open-source models such as Qwen2.5-VL and InternVL2.5,
as well as proprietary models like GPT-40 and Gemini
2.0 Flash—perform significantly below human levels in
number sense-related tasks. (ii) Multimodal mathematical
models and multimodal chain-of-thought (CoT) models did
not exhibit significant improvements in number sense abil-
ities. (iii) Stronger MLLMs with larger parameter sizes
and broader general abilities demonstrate modest gains
in number sense abilities. We believe VisNumBench will
serve as a valuable resource for the research community,
encouraging further advancements in enhancing MLLMs’
number sense abilities. Code and dataset are available at
hitps://wwwitttjjj. github.io/VisNumBench/.

1. Introduction

Number sense is an innate cognitive ability shared by both
humans and animals through the approximate number sys-
tem [14]. It enables individuals to perceive, process, and
manipulate numerical information intuitively. By fostering
a deeper understanding of abstract number concepts, it facil-
itates the grasp of complex mathematical theories and their
practical application in real-world scenarios. Figure | illus-
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Figure 1. Explanations of number sense: how humans intuitively
perceive and estimate values of angle, quantity, length, and scale.

trates the human ability to perceive and estimate numerical
quantities. For instance, a person can quickly recognize a
group of five bananas and intuitively estimate that there are
about two more groups of the same size. By leveraging this
innate number sense and grouping strategy, one can infer
that the total number of bananas is approximately fifteen.

Multimodal Large Language Models (MLLMs) have
made remarkable strides in tackling complex multimodal
tasks [2, 7, 24, 27]. Recent research has focused on enhanc-
ing their mathematical and scientific reasoning capabilities
by incorporating external tools [31, 50]. To assess these
abilities, numerous benchmarks [10, 18, 20, 29, 30, 32] have
been developed to evaluate the performance of MLLMs
on mathematical reasoning and numerical interpretation
tasks. While existing benchmarks effectively assess struc-
tured numerical reasoning problems, they primarily empha-
size abstract symbolic computation, mathematical problem-
solving, or interpreting numerical data in textual contexts.
However, these evaluations overlook a critical aspect of
human-like numerical cognition: intuitive number sense.



VisNumBench-Synthetic

Angle Perception Scale Perception Length Perception

(Range Estimation) (Range Estimation) (Multiplicative Estimation)

A

The estimated angle
between two lines?

The estimated value
in the figure?

line A is X times larger
than line B?

(a) (90, 100) degrees % (@) (10,20) + (@) 24 260
(b) (30, 40) degrees & (b) (0,10) (b) 1.3

(c) (170, 180) degrees (c) (30,40) © (c) 34 413
(d) (60, 70) degrees & 4 ' (d) (40,50) & %% (d) 4.0

Quantity Perception Depth Perception Area Perception

(Value Estimation) (Value Comparison) (Value Estimation)

The order of points from closest to

The number of The area of shape right is 4,

cuboids in the figure? farthest for the viewer? the area of shape left?
(@) 42 + (a) cADB © 4 (@) 17
(b) 50 % % (b) DCBA L (b) 6 %
(c) 28 & (c) BCAD () 2
d 20 © (d) DBCA d) 10 ©+4

VisNumBench-Real

Angle Perception Scale Perception Length Perception

(Value Estimation) (Value Estimation) (Range Estimation)

Quantity Perception  Depth Perception Volume Perception

(Multiplicative Estimation) (Value Comparison)

The estimated opening angle
of the laptop?

The estimated time of clock
is pointing to?

% (@) (20%, 30%) ©

(b) (80%, 90%)

(a)
(b) 112 degrees ©

45 degrees (7 hours and 55 minutes) & &4

(9 hours and 55 minutes)

(c) 147 degrees (c) (3 hours and 30 minutes) () (0%, 10%)
(d) 93degrees + 2% (d) (5hours and 40 minutes) % % (d) (50%, 60%) & 4 %
O Ground Truth i Human @ GPT-40

The estimated ratio of the water
height to the total height of the cup?

Which color of flowers appears The distance from point A to the
the most? viewer is X times than point B?

Which object has the largest
volume?

(a) yellow & 452 % (@) 30 &+ (a) ObjectA & %

(b) red & b) 1.8 &6 (b) ObjectB 4 %

(c) white (c) 43 (c) ObjectC @
% (d) purple (d) 6.0 (d) Object D

4 Gemini 2.0 flash % Qwen-2.5-72B % InternVL-2.5-78B

Figure 2. Examples from VisNumBench and responses from MLLMs. VisNumBench is divided into two subsets: VisNumBench-Synthetic
and VisNumBench-Real. It focuses on seven key visual numerical attributes: angle, scale, length, quantity, depth, area, and volume. Even
state-of-the-art MLLMs often struggle to answer the questions in VisNumBench accurately.
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Figure 3. Illustrations of four distinct visual numerical estimation
tasks: range estimation, value comparison, value estimation, and
multiplicative estimation.

Unlike humans, who effortlessly estimate quantities, per-
ceive proportions, and grasp numerical relationships at a
glance, MLLMs often depend on explicit reasoning steps
rather than perceptual intuition. This limitation raises fun-
damental questions about whether current models genuinely
comprehend numerical concepts or merely manipulate them
based on learned patterns in text and images.

In this work, we introduce the Visual Number Bench-
mark (VisNumBench), inspired by human number sense
abilities. As illustrated in Figure 2, VisNumBench is struc-
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Figure 4. Evaluation results of MLLMs on the VisNumBench. The
performance of MLLMs on VisNumBench is significantly poor in
terms of accuracy, whereas human performance is nearly perfect.

tured into two components based on different visual sce-
narios: VisNumBench-Synthetic and VisNumBench-Real.
VisNumBench-Synthetic comprises controlled, synthetic
images in which numerical relationships are explicitly de-
fined. VisNumBench-Real contains real-world images, pro-
viding a more complex and less controlled environment.
VisNumBench targets seven key dimensions of visual nu-



Table 1. Dataset statistics of VisNumBench based on various visual numerical attributes.

VisNumBench Angle Length Scale Quantity Depth Area Volume Total
VisNumBench-Synthetic 170 181 140 196 135 189 - 1011
VisNumBench-Real 149 162 143 147 154 - 147 902
Answer Format 4/5 options  3/4 options 4 options 3/4 options 4 options 4/5 options  3/4 options  3/4/5 options

merical attributes through four distinct types of visual nu-
merical estimation tasks, as depicted in Figure 3.

We evaluated 17 MLLMs on VisNumBench and found
that even state-of-the-art models perform poorly on our
proposed benchmark, which is shown in Figure 4. Fur-
thermore, our experiments reveal that adopting multimodal
mathematical models and multimodal Chain-of-Thought
(CoT) models did not lead to substantial performance im-
provements. However, the performance of the latest mod-
els is better than the previous models from the same fam-
ily. For example, Qwen2.5VL [42] performs better than
Qwen2VL [45]. It seems that optimization on data, train-
ing techniques, and model architecture will help models im-
prove their number sense ability. In this work, we aim to
advance MLLMs toward higher levels of intelligence by de-
veloping models that enhance visual number sense abilities.
The main contributions of this paper are listed as follows:
1. We introduce VisNumBench, a comprehensive bench-

mark integrating diverse data sources and an automated

evaluation framework to assess the numerical sense abil-
ities of MLLMs across various visual numerical tasks.
2. We conduct a comprehensive evaluation of various

MLLMs on VisNumBench, finding that even the most

advanced models still exhibit limited numerical sense.
3. Further experiments on historical models from the same

family show that their numerical sense abilities have im-

proved over time. To enhance this ability within a short

period, more specialized optimizations in data, training
techniques, and model architecture may be required.

2. Related Work
2.1. Multimodal Large Language Models

Recent advancements in MLLMs have demonstrated excep-
tional capabilities across a wide range of tasks. Leverag-
ing multimodal pre-training, MLLMs have achieved out-
standing performance in both open-source models [, 4, 5,
46, 52] and proprietary models [3, 35, 37]. Consequently,
these models have been widely adopted in various domains,
including mathematical reasoning [56], chart understand-
ing [33], medical image analysis [23], and text-rich image
comprehension [58]. Their growing success has spurred the
development of an increasing number of benchmarks to as-
sess performance across diverse visual and linguistic tasks.

2.2. Benchmarks for MLLMs

Advancements in MLLMs have led to the development of
numerous benchmarks aimed at evaluating model perfor-
mance across a broad spectrum of general multimodal tasks.
Several recent studies [15, 16, 20-22, 28, 53, 54] have intro-
duced more comprehensive reasoning and perception mul-
timodal benchmarks that provide extensive and holistic as-
sessments. Beyond general multimodal tasks, specialized
benchmarks have been created to evaluate the mathemat-
ical reasoning capabilities of MLLMs. Tasks such as vi-
sual reasoning with numbers, arithmetic problem-solving,
and algebraic manipulation play a crucial role in assess-
ing both the numerical proficiency and higher-order cogni-
tive abilities of MLLMs. Prominent benchmarks, including
MATHVISTA [30], Math-Vision [44], MathOdyssey [13],
and SMART-840 [9], are designed to test models on a di-
verse range of mathematical challenges, such as word prob-
lems, equation-solving, and complex multi-step reasoning.

These benchmarks aim to assess the ability of models to
understand and process mathematical content in both im-
ages and text, as well as their ability to apply mathemati-
cal operations in reasoning contexts. However, evaluating
MLLMs is crucial not only for measuring their proficiency
in traditional mathematical reasoning but also for under-
standing their ability to handle more tangible, real-world
dependent mathematical perception tasks. Humans typi-
cally acquire basic mathematical knowledge through intu-
itive number sense, which they then apply to real-world sce-
narios. This intuitive understanding of numbers and their
relationships is a fundamental aspect of human cognition,
enabling the seamless application of mathematical concepts
in everyday life. While MLLMs can process complex math-
ematical problems, they may struggle with tasks that require
this intuitive number sense. Therefore, existing benchmarks
should not only evaluate the proficiency of models in tra-
ditional mathematical reasoning but also assess their abil-
ity to apply mathematical concepts in real-world contexts.
This would help bridge the gap between abstract problem-
solving and practical application.

2.3. Number Sense of MLLMs

In the context of MLLMs, previous research [11, 25, 47]
has focused on tasks that rely on ordinal regression to eval-
uate number sense. Examples of such tasks include Age



Source of Images |aa)

Python Program & Existing Datasets 5o

Question: In the ABCD sections
of the pie chart, which section has
the largest/smallest area?
Answer: C/D
Question: The angles between the
curves on the road signs in the figure?

Answer: 120 degrees

(b)

VisNumBench-Synthetic: @ co:de B3

BB Construct Questions & Answers L)

Question: The number of cubes
in the figure?

Answer: 62

Question: How far the car
window is open?

Answer: 60%

Final Questions & Options @

Question: Which of the following options is
Question: In the ABCD sections of the pie
a reasonable estimate of the number of
chart, which section has the largest area?
cubes in the figure?
Options: (a) area A (b) area B
Options:(a) (0, 25) (b) (25, 50)
c) area C (d)area D
c) (50. 75) (d) (75, 100)

Filter
—— Question :Which of the following options best

Question: Which of the following options best
estimates the angles between the curves on the
estimates how far the car window is open?
road signs in the figure?
Options:(a) 10% (b) 40%
Options:(a) 120 degrees (b) 147 degrees

(c) 91 degrees (d) 166 degrees

(c)60% (d) 80%
(c)

Google E(D)

Figure 5. An illustration of the construction steps for images and questions in VisNumBench-Synthetic and VisNumBench-Real.

Estimation [38], Historical Image Dating [36], and Image
Aesthetics Assessment [39]. These studies typically focus
on estimating or ranking numerical attributes based on vi-
sual input, such as predicting the age of a person in an im-
age or determining the historical context of a photograph.
While these tasks assess the ability of the model to interpret
numerical cues and sequences, they often focus on specific
domains and may overlook the broader, more generalizable
concept of number sense.

Assessing the number sense of MLLMs refers to eval-
uating their number sense abilities in a variety of scenar-
ios. This includes tasks such as interpreting measurements,
performing approximate calculations, comparing quantities,
and identifying numerical relationships in different con-
texts. Such evaluations provide a better understanding of
how models perform on tasks that require flexible and con-
textual reasoning about numbers while also enhancing their
broad applicability and intelligence.

3. VisNumBench

3.1. Overview

We introduce VisNumBench, a benchmark specifically de-
signed to directly evaluate the intuitive numerical abilities
of MLLMs. Each instance in VisNumBench comprises a
figure, a multiple-choice question, and a corresponding an-
swer label. The dataset statistics of VisNumBench are pre-
sented in Table 1.

Compared with previous benchmarks, VisNumBench
has the following novel features:

¢ Comprehensive Scenario Integration: VisNumBench
incorporates both controlled synthetic figures and intri-
cate real-world scenes, enabling a thorough evaluation of
the number sense abilities of MLLMs.

* Multidimensional Visual Numerical Attributes: Vis-
NumBench encompasses seven fundamental aspects of
number sense—angle, length, scale, quantity, depth, area,
and volume—ensuring a rigorous and comprehensive
evaluation of the numerical capabilities of MLLMs.

* Comprehensive Visual Numerical Estimation Tasks:
VisNumBench encompasses four distinct modes of vi-
sual numerical estimation—value comparison, value es-
timation, range estimation, and multiplicative estima-
tion. These diverse tasks enable a thorough evaluation
of MLLMs’ ability to estimate numerical values across
different visual numerical categories.

3.2. Data Collection Process

3.2.1. Source of Images

The development of VisNumBench required gathering fig-

ures from diverse sources, as depicted in part (a) of Figure 5.

* Python Program. We developed a series of Python
scripts based on Matplotlib' to generate figures by ran-
domly sampling parameters, which are also stored for fu-
ture use. This approach allows precise control over var-
ious numerical properties, ensuring a well-balanced data
distribution and minimizing potential biases.

» Existing Datasets. To enhance the diversity of the pro-
posed benchmark and leverage existing high-quality data,
we incorporated figures from multiple well-established
datasets [16, 20, 30, 41, 48, 57], covering a broad range
of numerical and spatial perception scenarios.

* Web Collection. To incorporate more natural and diverse
visual data, we collected figures with numerical informa-
tion from public web sources [12, 17, 43]. These figures
were carefully curated and filtered to ensure relevance and
clarity before designing the corresponding questions.

* Images Taken by Us. To better reflect real-world con-
ditions, we manually constructed various number sense
scenarios and captured images using a camera. These
scenes encompassed real-world measurements, physical
counting tasks, and estimation challenges under natural
lighting and occlusion conditions.

3.2.2. QA Pair Construction and Quality Control

As shown in parts (b) and (c) in Figure 5, we involve QA
pairs for images from different sources. For the figures gen-

lhttps ://matplotlib.org/



Table 2. Accuracies of MLLMs on the VisNumBench-Synthetic (%) dataset. | Dark gray and light gray indicate the best and the second

best results among all models, respectively.

Angle Length Scale Quantity Depth  Area  Average
Random 2444 2541 25.00 25.00 25.00 23.68 24.76
Open-source MLLMs
Phi-3.5-vision 19.41 4088 41.43 26.53 26.67 39.15 32.34
LLaVA-v1.5-7B 31.18  30.39  34.29 33.16 26.67 21.16  29.38
LLaVA-v1.5-13B 35.88 3094 32.14 36.73 3333 24.34 32.15
LLaVA-v1.6-34B 40.000 4530 40.00 46.94 64.44 3333 4431
LLaVA-Onevision-7B ~ 25.88  51.38  42.86 38.78 3481 44.44 39.96
LLaVA-Onevision-72B 2471 [61.33| 62.14 50.00 48.15 58.73 50.84
InternVL2.5-8B 2647 4199 49.29 34.69 41.48 46.03 39.66
InternVL2.5-38B 3941 59.67 59.29 54.08 60.74  61.38 55.59
InternVL2.5-78B 3529  59.67  68.57 42.86 61.48 7249  56.18
Janus-Pro-7B 3176 43.65 45.71 35.71 3333 36.51 37.69
Qwen2.5-VL-3B 30.00 49.17 50.71 32.14 4222 51.85 4243
Qwen2.5-VL-7B 23.53  53.59  55.00 39.29 48.89 58.20  46.19
Qwen2.5-VL-72B 37.06  59.67 65.00 57.65 61.48  70.37 58.46
API-based models
GPT-40 3529 43.09 54.29 37.24 54.07 4339  43.72
Gemini 1.5 Flash 2647 4741 4440 26.02 2370  41.27 33.33
Gemini 2.0 Flash 31.18 57.46 81.43 55.10 51.11 7090  57.57
Gemini 1.5 Pro 3412 39.23  47.14 40.82 58.52 48.15  44.02
Human 90.00 96.00 100.00  96.00 98.00 92.00  95.33

erated by the Python program, we manually design differ-
ent questions based on the specific characteristics of each
figure and generate corresponding annotations using the pa-
rameters saved. We can design the question such as: “In
the ABCD sections of the pie chart, which section has the
largest/smallest area?” Based on the parameters saved, the
answer would be “C / D”. For images from other sources,
we manually designed questions and annotated them based
on different numerical attributes of the images. In addition,
we can generate different numerical estimation tasks based
on the answer type. For example, for the question: “Which
of the following options is a reasonable estimate of the num-
ber of cubes in the figure?”, when the answer is “(50, 75)”,
it corresponds to a range estimation task. On the contrary, if
the answer is “62”, it belongs to the value estimation task.

We employ a combination of automated and manual
methods to design distractors. For numerical answers, we
generate alternative options that are easily confusable with
the correct answer. Some distractors are constructed based
on their inherent properties (e.g., areas A, B, and D in part
(c) of Figure 5). These distractors are designed to align
with human perceptual biases, appearing plausible yet dis-
tinguishable from the correct answer.

To ensure the high quality of VisNumBench, we metic-

ulously reviewed all collected data and filtered out any am-
biguous or unclear entries. More details of the data con-
struction process can be found in Appendix B.

4. Experiments

We evaluate 17 well-known MLLMs from 8 model
families, including 13 open-source models: Phi-3.5-
vision [1], LLaVA-vl.5 (7B, 13B), and LLaVA-vl1.6-
34B [26], LLaVA-Onevision (7B, 72B) [23], Qwen2.5-VL
(3B, 7B, 72B) [42], InternVL2.5 (8B, 38B, 78B) [5], and
Janus-Pro-7B [4]. Additionally, we assess 4 proprietary
models: GPT-40 [19], Gemini 1.5 Flash, Gemini 2.0 Flash,
and Gemini 1.5 Pro [37].

We randomly selected 600 samples (50 QA pairs
from each numerical attribute), with 300 sourced from
VisNumBench-Synthetic and 300 from VisNumBench-
Real. Human evaluators independently answered each
question and provided assessments. Accuracy (%) is re-
ported for all experimental results, and all the results are
provided in Tables 2 and 3.



Table 3. Accuracies of MLLMs on the VisNumBench-Real (%) dataset. |Dark gray and Light gray indicate the best and second-best

results among all models, respectively.

Angle Length Scale Quantity Depth Volume Average
Random 25.00 25.00 25.00 27.83 25.00  25.40 25.54
Open-source MLLMs
Phi-3.5-vision 3020  37.65 27.97 48.30 48.70  29.93 37.25
LLaVA-v1.5-7B 22.82 3272 2587 36.73 2532 27.21 28.49
LLaVA-v1.5-13B 28.86  43.21 2937 46.94 49.35  41.50 40.02
LLaVA-v1.6-34B 28.86 5494  23.08 68.03 63.64 63.27 50.55
LLaVA-Onevision-7B  18.12  44.44  20.28 64.63 4481  50.34 40.58
LLaVA-Onevision-72B 1745 57.41 44,76 74.83 48.70  61.22 50.78
InternVL2.5-8B 28.86 3457 1538 64.63 49.35  47.62 40.13
InternVL2.5-38B 3020 51.85  26.57 83.67 61.04 58.50 52.11
InternVL2.5-78B 3691 [58.64] 48.95 79.59 52.60  62.59 56.54
Janus-Pro-7B 22.82 3210 35.66 48.98 3571  30.61 34.26
Qwen2.5-VL-3B 3020 4444  35.66 51.70 43.51  49.66 42.57
Qwen2.5-VL-7B 24.16  38.89  32.17 59.18 48.70  42.86 41.02
Qwen2.5-VL-72B 3423  50.62 43.36 80.27 52.60  59.18 53.33
API-based models
GPT-40 27.52  30.25 37.06 60.54 3571  47.62 39.58
Gemini 1.5 Flash 14.77  35.80 26.57 57.14 24.68  43.54 33.70
Gemini 2.0 Flash 38.93] 48.77 |[74.14 81.63 46.10 51.70 56.54
Gemini 1.5 Pro 30.20 45.68 27.97 68.03 64.29 55.10 48.67
Human 96.00 100.00 100.00  98.00 96.00  94.00 97.33

4.1. Evaluation Results and Analysis

From Tables 2 and 3, we observe that the performance of
MLLMs is not comparable to that of humans. Among the
seven types of questions, quantity-related tasks appear to
be the easiest, while angle-related tasks are the most diffi-
cult. This is possibly because the amount of training data
available for quantity-related tasks is significantly greater
than that for angle-related tasks. By comparing the evalua-
tions on synthetic and real images, we find that the perfor-
mance of the same model does not exhibit significant vari-
ance. Thus, in terms of numerical reasoning ability, both
synthetic and real images present similar challenges for ex-
isting MLLMs. Moreover, we observe that the best open-
sourced model performs comparably to the best closed-
source models.

More detailed analyses and discussions are provided in
the following subsections.

4.1.1. Performance on VisNumBench-Synthetic

Table 2 presents the results for various MLLMs on the
VisNumBench-Synthetic dataset. Among the open-source
models, Qwen2.5-VL-72B achieves the best performance,
with an average accuracy of 58.46%. InternVL2.5-38B,
InternVL2.5-78B, and LLaVA-v1.6-34B also demonstrate

strong performance, each achieving either the best or the
second-best accuracy in at least two tasks. LLaVA-v1.6-
34B attains the highest accuracy in angle and depth estima-
tion; however, its overall average accuracy is only 44.31%.
LLaVA-Onevision-72B also performs well, achieving the
highest accuracy in length estimation at 61.33%. In gen-
eral, models with larger parameter sizes tend to exhibit su-
perior performance, aligning with the intuition that larger
models can better capture complex numerical relationships
and fine-grained visual patterns.

In the API-based models, Gemini 2.0 Flash demonstrates
the best performance, achieving an average accuracy of
57.57%. In contrast, GPT-40 and Gemini 1.5 Pro exhibit
comparable performance, albeit with lower average accu-
racies. Gemini 1.5 Flash yields the weakest performance,
with an average accuracy of 33.33%. Notably, certain open-
source models perform on par with or even surpass propri-
etary models, suggesting that the disparity in numerical rea-
soning capabilities between open-source and closed-source
models is minimal.

4.1.2. Performance on VisNumBench-Real

Accuracy on the VisNumBench-Real dataset shows simi-
lar trends. InternVL2.5-78B and Gemini 2.0 Flash stand
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Figure 6. Confusion matrices (%) of MLLMs on the VisNumBench-Synthetic and VisNumBench-Real datasets across different visual

numerical estimation tasks.

out with an average accuracy of 56.54%, achieving near-
optimal results across multiple tasks, as shown in Table 3.
InternVL2.5-38B attained an exceptionally high accuracy
of 83.67% on the quantity task, while LLaVA-v1.6-34B
excelled in the volume task, achieving the highest scores.
Qwen2.5-VL-72B demonstrated relatively balanced perfor-
mance, yielding a suboptimal average accuracy of 53.33%.

Surprisingly, Gemini 1.5 Pro achieved the highest accu-
racy in depth estimation, reaching 64.29%. However, its
overall average accuracy remained unsatisfactory. Other
proprietary models, such as GPT-40 and Gemini 1.5 Flash,
exhibited relatively weaker performance. In general, the
accuracy on VisNumBench-Real is lower than that on
VisNumBench-Synthetic, likely due to the increased com-
plexity and variability of real-world images.

4.1.3. Performance on Different Visual Numerical Esti-
mation Tasks

As we analyze performance across different numerical es-
timation tasks, Figure 6 reveals that in the synthetic sce-
nario, Gemini 2.0 Flash and Qwen2.5-VL-72B achieve the
highest performance across all visual numerical estimation
tasks, particularly in range estimation, value estimation, and
value comparison, where their accuracies consistently ex-
ceed 60%. In contrast, GPT-40 exhibits the lowest per-
formance in all tasks, especially in value comparison and
multiplicative estimation. In the real-world scenario, most
models achieved their best performance in value compari-
son tasks, which are also the easiest for humans. Although
Gemini 2.0 Flash and InternVL2.5-78B continue to perform
well in most tasks, their performance in multiplicative es-
timation has declined compared to the synthetic scenario.
Additionally, GPT-40 continues to perform poorly across
all tasks, particularly in multiplicative estimation and value
comparison, where it falls significantly behind other mod-

els.

Notably, in the multiplicative estimation task, LLaVA-
v1.6-34B outperforms all other models by a significant mar-
gin. This suggests that certain models may be more special-
ized for specific types of tasks, and further fine-tuning could
enhance performance across different tasks.

4.2. Further Analysis

How do math-special models perform on the VisNum-
Bench? To investigate the number sense abilities of math-
special models, we introduce two multimodal mathemati-
cal models: (1) InternVL2-8B-MPO [49], initialized from
InternVL2-8B [8] and fine-tuned on the large-scale multi-
modal reasoning preference dataset MMPR [49], achieving
an accuracy of 65.65% on MathVista; (2) Math-LLaVA-
13B [40], initialized from LLaVA-v1.5-13B and fine-tuned
on the MathV360K [40] dataset. As shown in Figure 7,
InternVL2-8B-MPO achieved a 1.0% improvement in syn-
thetic scenarios and a 0.3% increase in real-world scenarios.
Its enhancements are task-specific rather than universally
effective across different number sense challenges. In con-
trast, Math-LLaVA-13B exhibited a polarized performance
trend: while it improved by 3.7% on the synthetic dataset,
its accuracy declined by 6.9% in real-world scenarios. This
suggests that although the model benefits from training on
synthetic data, it struggles to generalize to the complexity
and variability of real-world number sense tasks. Relying
solely on synthetic data may be insufficient to enhance num-
ber sense capabilities in real-world applications. Additional
strategies, such as incorporating more diverse real-world
training data or refining model architectures, may be nec-
essary to achieve meaningful improvements.

How do the multimodal reasoning models perform?
To examine whether reasoning techniques can enhance
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Figure 7. Improvements brought by multimodal mathematical models (InternVL2-8B-MPO and Math-LLaVA-13B) and multimodal CoT
models (Llama-3.2V-11B-cot and R1-OneVision-7B). Table 9 and Table 10 in the appendix provide detailed results.

Table 4. Comparisons of the performance of models from the
Qwen-VL family and the InternVL family in synthetic and real-
world scenes. Table 11 in the appendix provides detailed results.

Average (Synthetic)  Average (Real)
Qwen2-VL-2B 31.85 24.94
Qwen2.5-VL-3B 42.24(1 +10.39) 42.57(1 +17.63)
Qwen2-VL-7B 41.25 4191
Qwen2.5-VL-7B 46.19(7 +4.94) 41.02(] —0.89)
Qwen2-VL-72B 54.20 46.56
Qwen2.5-VL-72B 58.46(1 +4.26) 53.33(1 +6.77)
InternVL2-8B 39.56 39.58
InternVL2.5-8B 39.66(1 +0.10) 40.13(7 +0.55)
InternVL2-40B 45.50 45.12
InternVL2.5-38B 55.59(1 +10.09) 52.11(1 +6.99)

the number sense abilities of MLLMs, we evaluate two
multimodal reasoning models: Llama-3.2V-11B-cot® [51]
and R1-OneVision-7B>. Llama-3.2V-11B-cot is trained us-
ing LLaVA-01-100k [51], achieving a 6.2% performance
improvement on MathVista compared to Llama-3.2-11B-
Vision-Instruct [34]. R1-OneVision-7B, trained with a rule-
based reinforcement learning technique, attains an accu-
racy of 44.06% on Mathverse [55]. Accordingly, we as-
sess these models on our benchmark. The results, pre-
sented in Figure 7, indicate that neither Llama-3.2V-11B-
cot nor R1-OneVision-7B achieved the expected perfor-
mance gains. On the contrary, their accuracy dropped

2nttps://huggingface.co/Xkev/Llama-3.2V-11B-cot
3https://qithub.com/FancvfMLLM/R1fOnevisior1

significantly—except for a modest 1.6% improvement by
Llama-3.2V-11B-cot in synthetic scenarios—especially in
real-world settings. These findings suggest that developing
reasoning techniques specifically tailored for number sense
abilities may be necessary.

What helps improve the performance? To determine
the factors contributing to the improvement of number sense
ability in MLLMs, we evaluate historical models from the
same family over time, specifically the Qwen-VL family
and the InternVL family. The results are presented in Ta-
ble 4. As observed, the performance of the latest models
generally surpasses that of their predecessors. By compar-
ing Qwen2-VL [45] with Qwen2.5-VL [42], as well as In-
ternVL2 with InternVL2.5 [6], we observe improvements
in several aspects: (1) data scale and quality, (2) a more
powerful encoder, (3) model architecture, and (4) training
strategy. These findings suggest that further exploration in
these directions is essential for enhancing the number sense
abilities of MLLMs.

5. Conclusion

In this work, we introduce VisNumBench, a novel bench-
mark designed to evaluate MLLMs on core number sense
abilities that are inadequately addressed by existing evalu-
ation benchmarks. Our assessment of 17 MLLMs uncov-
ers substantial deficiencies in their capacity to demonstrate
human-like number sense. Even the most advanced mod-
els still demonstrate limited numerical sense abilities. Fur-
ther experiments on historical models from the same family
show that to enhance this ability within a short period, more
specialized optimizations in data, training techniques, and
model architecture may be required.
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