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Abstract

Can Multimodal Large Language Models (MLLMs) de-

velop an intuitive number sense similar to humans? Tar-

geting this problem, we introduce Visual Number Bench-

mark (VisNumBench) to evaluate the number sense abil-

ities of MLLMs across a wide range of visual numeri-

cal tasks. VisNumBench consists of about 1, 900 multiple-

choice question-answer pairs derived from both synthetic

and real-world visual data, covering seven visual numeri-

cal attributes and four types of visual numerical estimation

tasks. Our experiments on VisNumBench led to the follow-

ing key findings: (i) The 17 MLLMs we tested—including

open-source models such as Qwen2.5-VL and InternVL2.5,

as well as proprietary models like GPT-4o and Gemini

2.0 Flash—perform significantly below human levels in

number sense-related tasks. (ii) Multimodal mathematical

models and multimodal chain-of-thought (CoT) models did

not exhibit significant improvements in number sense abil-

ities. (iii) Stronger MLLMs with larger parameter sizes

and broader general abilities demonstrate modest gains

in number sense abilities. We believe VisNumBench will

serve as a valuable resource for the research community,

encouraging further advancements in enhancing MLLMs’

number sense abilities. Code and dataset are available at

https://wwwtttjjj.github.io/VisNumBench/.

1. Introduction

Number sense is an innate cognitive ability shared by both

humans and animals through the approximate number sys-

tem [14]. It enables individuals to perceive, process, and

manipulate numerical information intuitively. By fostering

a deeper understanding of abstract number concepts, it facil-

itates the grasp of complex mathematical theories and their

practical application in real-world scenarios. Figure 1 illus-
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The angle formed by 
the green lines is 
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Figure 1. Explanations of number sense: how humans intuitively

perceive and estimate values of angle, quantity, length, and scale.

trates the human ability to perceive and estimate numerical

quantities. For instance, a person can quickly recognize a

group of five bananas and intuitively estimate that there are

about two more groups of the same size. By leveraging this

innate number sense and grouping strategy, one can infer

that the total number of bananas is approximately fifteen.

Multimodal Large Language Models (MLLMs) have

made remarkable strides in tackling complex multimodal

tasks [2, 7, 24, 27]. Recent research has focused on enhanc-

ing their mathematical and scientific reasoning capabilities

by incorporating external tools [31, 50]. To assess these

abilities, numerous benchmarks [10, 18, 20, 29, 30, 32] have

been developed to evaluate the performance of MLLMs

on mathematical reasoning and numerical interpretation

tasks. While existing benchmarks effectively assess struc-

tured numerical reasoning problems, they primarily empha-

size abstract symbolic computation, mathematical problem-

solving, or interpreting numerical data in textual contexts.

However, these evaluations overlook a critical aspect of

human-like numerical cognition: intuitive number sense.



Ground Truth

VisNumBench-Real

VisNumBench-Synthetic

GPT-4o Gemini 2.0 flash Qwen-2.5-72B InternVL-2.5-78B

The estimated angle 
between two lines?

(a) (90, 100) degrees

(b) (30, 40) degrees

(c) (170, 180) degrees

(d) (60, 70) degrees

Angle Perception
(Range Estimation)

The estimated value
in the figure?

(a) (10, 20)

(b) (0, 10)

(c) (30, 40)

(d) (40, 50)

Scale Perception
(Range Estimation)

Length Perception
(Multiplicative Estimation)

line A is X times larger 
than line B?

(a) 2.4 

(b) 1.3 

(c) 3.4 

(d) 4.0

Quantity Perception

The number of 
cuboids in the figure?

(a) 42 

(b) 50 

(c) 28 

(d) 20

(Value Estimation)

Depth Perception
(Value Comparison)

The order of points from closest to 
farthest for the viewer?

(a) CADB

(b) DCBA

(c) BCAD

(d) DBCA

The area of shape right is 4, 
the area of shape left?

(a) 17 

(b) 6 

(c) 2 

(d) 10

Area Perception
(Value Estimation)

Human

Angle Perception

The estimated opening angle 
of the laptop?

(a) 45 degrees 

(b) 112 degrees 

(c) 147 degrees 

(d) 93 degrees

(Value Estimation)

Scale Perception

The estimated time of clock 
is pointing to?

(Value Estimation)

(a) (7 hours and 55 minutes)

(b) (9 hours and 55 minutes)

(c) (3 hours and 30 minutes)

(d) (5 hours and 40 minutes)

Length Perception

The estimated ratio of the water 
height to the total height of the cup?

(a) (20%, 30%)

(b) (80%, 90%) 

(c) (0%, 10%)

(d) (50%, 60%)

(Range Estimation)

Quantity Perception

Which color of flowers appears 
the most?

(a) yellow

(b) red

(c) white

(d) purple

(Value Comparison)

The distance from point A to the 
viewer is X times than point B?

Depth Perception

(a) 3.0

(b) 1.8 

(c) 4.3 

(d) 6.0

(Multiplicative Estimation)

Volume Perception

Which object has the largest 
volume?

(a)  Object A 

(b)  Object B 

(c)  Object C 

(d)  Object D

(Value Comparison)

A B C D

(a) 45 degrees 

(b) 112 degrees 

(c) 147 degrees 

(d) 93 degrees

Figure 2. Examples from VisNumBench and responses from MLLMs. VisNumBench is divided into two subsets: VisNumBench-Synthetic

and VisNumBench-Real. It focuses on seven key visual numerical attributes: angle, scale, length, quantity, depth, area, and volume. Even

state-of-the-art MLLMs often struggle to answer the questions in VisNumBench accurately.

Range Estimation

Which of the following ranges is a

reasonable estimate for Angle A?

(a)(150, 160) degrees 

(b)(50, 60) degrees 

(c)(90, 100) degrees 

(d)(10, 20) degrees

Value Estimation

Which of the following options is a 

reasonable estimate of the Angle B?

(a)10 degrees 

(b)112 degrees 

(c)60 degrees 

(d)30 degrees

Value Comparison

Which angle is the largest among angles 

A, B, C, and D?

(a)Angle A 

(b)Angle B 

(c)Angle C 

(d)Angle D

Multiplicative Estimation

Angle C is X times larger than Angel D. 

Which of the following options is a 

reasonable estimate for X?

(a)1.3 

(b)1.9 

(c)3.1 

(d)4.3

There are four angles in
the figure: Angle A, Angle
B, Angle C, Angle D.

Figure 3. Illustrations of four distinct visual numerical estimation

tasks: range estimation, value comparison, value estimation, and

multiplicative estimation.

Unlike humans, who effortlessly estimate quantities, per-

ceive proportions, and grasp numerical relationships at a

glance, MLLMs often depend on explicit reasoning steps

rather than perceptual intuition. This limitation raises fun-

damental questions about whether current models genuinely

comprehend numerical concepts or merely manipulate them

based on learned patterns in text and images.

In this work, we introduce the Visual Number Bench-

mark (VisNumBench), inspired by human number sense

abilities. As illustrated in Figure 2, VisNumBench is struc-
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InternVL2.5-78B

LLaVA-Onevision-72B

LLaVA-v1.6-34B

Human

GPT-4o

Gemini 2.0 Flash

Figure 4. Evaluation results of MLLMs on the VisNumBench. The

performance of MLLMs on VisNumBench is significantly poor in

terms of accuracy, whereas human performance is nearly perfect.

tured into two components based on different visual sce-

narios: VisNumBench-Synthetic and VisNumBench-Real.

VisNumBench-Synthetic comprises controlled, synthetic

images in which numerical relationships are explicitly de-

fined. VisNumBench-Real contains real-world images, pro-

viding a more complex and less controlled environment.

VisNumBench targets seven key dimensions of visual nu-



Table 1. Dataset statistics of VisNumBench based on various visual numerical attributes.

VisNumBench Angle Length Scale Quantity Depth Area Volume Total

VisNumBench-Synthetic 170 181 140 196 135 189 - 1011

VisNumBench-Real 149 162 143 147 154 - 147 902

Answer Format 4/5 options 3/4 options 4 options 3/4 options 4 options 4/5 options 3/4 options 3/4/5 options

merical attributes through four distinct types of visual nu-

merical estimation tasks, as depicted in Figure 3.

We evaluated 17 MLLMs on VisNumBench and found

that even state-of-the-art models perform poorly on our

proposed benchmark, which is shown in Figure 4. Fur-

thermore, our experiments reveal that adopting multimodal

mathematical models and multimodal Chain-of-Thought

(CoT) models did not lead to substantial performance im-

provements. However, the performance of the latest mod-

els is better than the previous models from the same fam-

ily. For example, Qwen2.5VL [42] performs better than

Qwen2VL [45]. It seems that optimization on data, train-

ing techniques, and model architecture will help models im-

prove their number sense ability. In this work, we aim to

advance MLLMs toward higher levels of intelligence by de-

veloping models that enhance visual number sense abilities.

The main contributions of this paper are listed as follows:

1. We introduce VisNumBench, a comprehensive bench-

mark integrating diverse data sources and an automated

evaluation framework to assess the numerical sense abil-

ities of MLLMs across various visual numerical tasks.

2. We conduct a comprehensive evaluation of various

MLLMs on VisNumBench, finding that even the most

advanced models still exhibit limited numerical sense.

3. Further experiments on historical models from the same

family show that their numerical sense abilities have im-

proved over time. To enhance this ability within a short

period, more specialized optimizations in data, training

techniques, and model architecture may be required.

2. Related Work

2.1. Multimodal Large Language Models

Recent advancements in MLLMs have demonstrated excep-

tional capabilities across a wide range of tasks. Leverag-

ing multimodal pre-training, MLLMs have achieved out-

standing performance in both open-source models [1, 4, 5,

46, 52] and proprietary models [3, 35, 37]. Consequently,

these models have been widely adopted in various domains,

including mathematical reasoning [56], chart understand-

ing [33], medical image analysis [23], and text-rich image

comprehension [58]. Their growing success has spurred the

development of an increasing number of benchmarks to as-

sess performance across diverse visual and linguistic tasks.

2.2. Benchmarks for MLLMs

Advancements in MLLMs have led to the development of

numerous benchmarks aimed at evaluating model perfor-

mance across a broad spectrum of general multimodal tasks.

Several recent studies [15, 16, 20–22, 28, 53, 54] have intro-

duced more comprehensive reasoning and perception mul-

timodal benchmarks that provide extensive and holistic as-

sessments. Beyond general multimodal tasks, specialized

benchmarks have been created to evaluate the mathemat-

ical reasoning capabilities of MLLMs. Tasks such as vi-

sual reasoning with numbers, arithmetic problem-solving,

and algebraic manipulation play a crucial role in assess-

ing both the numerical proficiency and higher-order cogni-

tive abilities of MLLMs. Prominent benchmarks, including

MATHVISTA [30], Math-Vision [44], MathOdyssey [13],

and SMART-840 [9], are designed to test models on a di-

verse range of mathematical challenges, such as word prob-

lems, equation-solving, and complex multi-step reasoning.

These benchmarks aim to assess the ability of models to

understand and process mathematical content in both im-

ages and text, as well as their ability to apply mathemati-

cal operations in reasoning contexts. However, evaluating

MLLMs is crucial not only for measuring their proficiency

in traditional mathematical reasoning but also for under-

standing their ability to handle more tangible, real-world

dependent mathematical perception tasks. Humans typi-

cally acquire basic mathematical knowledge through intu-

itive number sense, which they then apply to real-world sce-

narios. This intuitive understanding of numbers and their

relationships is a fundamental aspect of human cognition,

enabling the seamless application of mathematical concepts

in everyday life. While MLLMs can process complex math-

ematical problems, they may struggle with tasks that require

this intuitive number sense. Therefore, existing benchmarks

should not only evaluate the proficiency of models in tra-

ditional mathematical reasoning but also assess their abil-

ity to apply mathematical concepts in real-world contexts.

This would help bridge the gap between abstract problem-

solving and practical application.

2.3. Number Sense of MLLMs

In the context of MLLMs, previous research [11, 25, 47]

has focused on tasks that rely on ordinal regression to eval-

uate number sense. Examples of such tasks include Age



VisNumBench-Synthetic: VisNumBench-Real:

Construct Questions & Answers

Question: The angles between the 

curves on the road signs in the figure?

Answer: 120 degrees

Question: In the ABCD sections 

of the pie chart, which section has 

the largest/smallest area?

Answer: C / D

Question: The number of cubes 

in the figure?

Answer: 62

Question: How far the car 

window is open?

Answer: 60%

Source of Images
Existing Datasets

Images Taken by Us

Python Program

Web Collection

Final Questions  & Options

Question: Which of the following options best 

estimates how far the car window is open?

Options:(a) 10%  (b)  40%

(c) 60%  (d) 80%

Question: In the ABCD sections of the pie 

chart, which section has the largest area?

Options: (a) area A (b) area B

(c) area C  (d) area D

Question: Which of the following options is 

a reasonable estimate of the number of 

cubes in the figure?

Options:(a) (0, 25) (b) (25, 50) 

(c) (50, 75) (d) (75, 100)

Question :Which of the following options best 

estimates the angles between the curves on the 

road signs in the figure? 

Options:(a) 120 degrees (b) 147 degrees 

(c) 91 degrees (d) 166 degrees

Filter

(a)

(b)

(c)

Figure 5. An illustration of the construction steps for images and questions in VisNumBench-Synthetic and VisNumBench-Real.

Estimation [38], Historical Image Dating [36], and Image

Aesthetics Assessment [39]. These studies typically focus

on estimating or ranking numerical attributes based on vi-

sual input, such as predicting the age of a person in an im-

age or determining the historical context of a photograph.

While these tasks assess the ability of the model to interpret

numerical cues and sequences, they often focus on specific

domains and may overlook the broader, more generalizable

concept of number sense.

Assessing the number sense of MLLMs refers to eval-

uating their number sense abilities in a variety of scenar-

ios. This includes tasks such as interpreting measurements,

performing approximate calculations, comparing quantities,

and identifying numerical relationships in different con-

texts. Such evaluations provide a better understanding of

how models perform on tasks that require flexible and con-

textual reasoning about numbers while also enhancing their

broad applicability and intelligence.

3. VisNumBench

3.1. Overview

We introduce VisNumBench, a benchmark specifically de-

signed to directly evaluate the intuitive numerical abilities

of MLLMs. Each instance in VisNumBench comprises a

figure, a multiple-choice question, and a corresponding an-

swer label. The dataset statistics of VisNumBench are pre-

sented in Table 1.

Compared with previous benchmarks, VisNumBench

has the following novel features:

• Comprehensive Scenario Integration: VisNumBench

incorporates both controlled synthetic figures and intri-

cate real-world scenes, enabling a thorough evaluation of

the number sense abilities of MLLMs.

• Multidimensional Visual Numerical Attributes: Vis-

NumBench encompasses seven fundamental aspects of

number sense—angle, length, scale, quantity, depth, area,

and volume—ensuring a rigorous and comprehensive

evaluation of the numerical capabilities of MLLMs.

• Comprehensive Visual Numerical Estimation Tasks:

VisNumBench encompasses four distinct modes of vi-

sual numerical estimation—value comparison, value es-

timation, range estimation, and multiplicative estima-

tion. These diverse tasks enable a thorough evaluation

of MLLMs’ ability to estimate numerical values across

different visual numerical categories.

3.2. Data Collection Process

3.2.1. Source of Images

The development of VisNumBench required gathering fig-

ures from diverse sources, as depicted in part (a) of Figure 5.

• Python Program. We developed a series of Python

scripts based on Matplotlib1 to generate figures by ran-

domly sampling parameters, which are also stored for fu-

ture use. This approach allows precise control over var-

ious numerical properties, ensuring a well-balanced data

distribution and minimizing potential biases.

• Existing Datasets. To enhance the diversity of the pro-

posed benchmark and leverage existing high-quality data,

we incorporated figures from multiple well-established

datasets [16, 20, 30, 41, 48, 57], covering a broad range

of numerical and spatial perception scenarios.

• Web Collection. To incorporate more natural and diverse

visual data, we collected figures with numerical informa-

tion from public web sources [12, 17, 43]. These figures

were carefully curated and filtered to ensure relevance and

clarity before designing the corresponding questions.

• Images Taken by Us. To better reflect real-world con-

ditions, we manually constructed various number sense

scenarios and captured images using a camera. These

scenes encompassed real-world measurements, physical

counting tasks, and estimation challenges under natural

lighting and occlusion conditions.

3.2.2. QA Pair Construction and Quality Control

As shown in parts (b) and (c) in Figure 5, we involve QA

pairs for images from different sources. For the figures gen-

1https://matplotlib.org/



Table 2. Accuracies of MLLMs on the VisNumBench-Synthetic (%) dataset. Dark gray and light gray indicate the best and the second

best results among all models, respectively.

Angle Length Scale Quantity Depth Area Average

Random 24.44 25.41 25.00 25.00 25.00 23.68 24.76

Open-source MLLMs

Phi-3.5-vision 19.41 40.88 41.43 26.53 26.67 39.15 32.34

LLaVA-v1.5-7B 31.18 30.39 34.29 33.16 26.67 21.16 29.38

LLaVA-v1.5-13B 35.88 30.94 32.14 36.73 33.33 24.34 32.15

LLaVA-v1.6-34B 40.00 45.30 40.00 46.94 64.44 33.33 44.31

LLaVA-Onevision-7B 25.88 51.38 42.86 38.78 34.81 44.44 39.96

LLaVA-Onevision-72B 24.71 61.33 62.14 50.00 48.15 58.73 50.84

InternVL2.5-8B 26.47 41.99 49.29 34.69 41.48 46.03 39.66

InternVL2.5-38B 39.41 59.67 59.29 54.08 60.74 61.38 55.59

InternVL2.5-78B 35.29 59.67 68.57 42.86 61.48 72.49 56.18

Janus-Pro-7B 31.76 43.65 45.71 35.71 33.33 36.51 37.69

Qwen2.5-VL-3B 30.00 49.17 50.71 32.14 42.22 51.85 42.43

Qwen2.5-VL-7B 23.53 53.59 55.00 39.29 48.89 58.20 46.19

Qwen2.5-VL-72B 37.06 59.67 65.00 57.65 61.48 70.37 58.46

API-based models

GPT-4o 35.29 43.09 54.29 37.24 54.07 43.39 43.72

Gemini 1.5 Flash 26.47 47.41 44.40 26.02 23.70 41.27 33.33

Gemini 2.0 Flash 31.18 57.46 81.43 55.10 51.11 70.90 57.57

Gemini 1.5 Pro 34.12 39.23 47.14 40.82 58.52 48.15 44.02

Human 90.00 96.00 100.00 96.00 98.00 92.00 95.33

erated by the Python program, we manually design differ-

ent questions based on the specific characteristics of each

figure and generate corresponding annotations using the pa-

rameters saved. We can design the question such as: “In

the ABCD sections of the pie chart, which section has the

largest/smallest area?” Based on the parameters saved, the

answer would be “C / D”. For images from other sources,

we manually designed questions and annotated them based

on different numerical attributes of the images. In addition,

we can generate different numerical estimation tasks based

on the answer type. For example, for the question: “Which

of the following options is a reasonable estimate of the num-

ber of cubes in the figure?”, when the answer is “(50, 75)”,

it corresponds to a range estimation task. On the contrary, if

the answer is “62”, it belongs to the value estimation task.

We employ a combination of automated and manual

methods to design distractors. For numerical answers, we

generate alternative options that are easily confusable with

the correct answer. Some distractors are constructed based

on their inherent properties (e.g., areas A, B, and D in part

(c) of Figure 5). These distractors are designed to align

with human perceptual biases, appearing plausible yet dis-

tinguishable from the correct answer.

To ensure the high quality of VisNumBench, we metic-

ulously reviewed all collected data and filtered out any am-

biguous or unclear entries. More details of the data con-

struction process can be found in Appendix B.

4. Experiments

We evaluate 17 well-known MLLMs from 8 model

families, including 13 open-source models: Phi-3.5-

vision [1], LLaVA-v1.5 (7B, 13B), and LLaVA-v1.6-

34B [26], LLaVA-Onevision (7B, 72B) [23], Qwen2.5-VL

(3B, 7B, 72B) [42], InternVL2.5 (8B, 38B, 78B) [5], and

Janus-Pro-7B [4]. Additionally, we assess 4 proprietary

models: GPT-4o [19], Gemini 1.5 Flash, Gemini 2.0 Flash,

and Gemini 1.5 Pro [37].

We randomly selected 600 samples (50 QA pairs

from each numerical attribute), with 300 sourced from

VisNumBench-Synthetic and 300 from VisNumBench-

Real. Human evaluators independently answered each

question and provided assessments. Accuracy (%) is re-

ported for all experimental results, and all the results are

provided in Tables 2 and 3.



Table 3. Accuracies of MLLMs on the VisNumBench-Real (%) dataset. Dark gray and Light gray indicate the best and second-best

results among all models, respectively.

Angle Length Scale Quantity Depth Volume Average

Random 25.00 25.00 25.00 27.83 25.00 25.40 25.54

Open-source MLLMs

Phi-3.5-vision 30.20 37.65 27.97 48.30 48.70 29.93 37.25

LLaVA-v1.5-7B 22.82 32.72 25.87 36.73 25.32 27.21 28.49

LLaVA-v1.5-13B 28.86 43.21 29.37 46.94 49.35 41.50 40.02

LLaVA-v1.6-34B 28.86 54.94 23.08 68.03 63.64 63.27 50.55

LLaVA-Onevision-7B 18.12 44.44 20.28 64.63 44.81 50.34 40.58

LLaVA-Onevision-72B 17.45 57.41 44.76 74.83 48.70 61.22 50.78

InternVL2.5-8B 28.86 34.57 15.38 64.63 49.35 47.62 40.13

InternVL2.5-38B 30.20 51.85 26.57 83.67 61.04 58.50 52.11

InternVL2.5-78B 36.91 58.64 48.95 79.59 52.60 62.59 56.54

Janus-Pro-7B 22.82 32.10 35.66 48.98 35.71 30.61 34.26

Qwen2.5-VL-3B 30.20 44.44 35.66 51.70 43.51 49.66 42.57

Qwen2.5-VL-7B 24.16 38.89 32.17 59.18 48.70 42.86 41.02

Qwen2.5-VL-72B 34.23 50.62 43.36 80.27 52.60 59.18 53.33

API-based models

GPT-4o 27.52 30.25 37.06 60.54 35.71 47.62 39.58

Gemini 1.5 Flash 14.77 35.80 26.57 57.14 24.68 43.54 33.70

Gemini 2.0 Flash 38.93 48.77 74.14 81.63 46.10 51.70 56.54

Gemini 1.5 Pro 30.20 45.68 27.97 68.03 64.29 55.10 48.67

Human 96.00 100.00 100.00 98.00 96.00 94.00 97.33

4.1. Evaluation Results and Analysis

From Tables 2 and 3, we observe that the performance of

MLLMs is not comparable to that of humans. Among the

seven types of questions, quantity-related tasks appear to

be the easiest, while angle-related tasks are the most diffi-

cult. This is possibly because the amount of training data

available for quantity-related tasks is significantly greater

than that for angle-related tasks. By comparing the evalua-

tions on synthetic and real images, we find that the perfor-

mance of the same model does not exhibit significant vari-

ance. Thus, in terms of numerical reasoning ability, both

synthetic and real images present similar challenges for ex-

isting MLLMs. Moreover, we observe that the best open-

sourced model performs comparably to the best closed-

source models.

More detailed analyses and discussions are provided in

the following subsections.

4.1.1. Performance on VisNumBench-Synthetic

Table 2 presents the results for various MLLMs on the

VisNumBench-Synthetic dataset. Among the open-source

models, Qwen2.5-VL-72B achieves the best performance,

with an average accuracy of 58.46%. InternVL2.5-38B,

InternVL2.5-78B, and LLaVA-v1.6-34B also demonstrate

strong performance, each achieving either the best or the

second-best accuracy in at least two tasks. LLaVA-v1.6-

34B attains the highest accuracy in angle and depth estima-

tion; however, its overall average accuracy is only 44.31%.

LLaVA-Onevision-72B also performs well, achieving the

highest accuracy in length estimation at 61.33%. In gen-

eral, models with larger parameter sizes tend to exhibit su-

perior performance, aligning with the intuition that larger

models can better capture complex numerical relationships

and fine-grained visual patterns.

In the API-based models, Gemini 2.0 Flash demonstrates

the best performance, achieving an average accuracy of

57.57%. In contrast, GPT-4o and Gemini 1.5 Pro exhibit

comparable performance, albeit with lower average accu-

racies. Gemini 1.5 Flash yields the weakest performance,

with an average accuracy of 33.33%. Notably, certain open-

source models perform on par with or even surpass propri-

etary models, suggesting that the disparity in numerical rea-

soning capabilities between open-source and closed-source

models is minimal.

4.1.2. Performance on VisNumBench-Real

Accuracy on the VisNumBench-Real dataset shows simi-

lar trends. InternVL2.5-78B and Gemini 2.0 Flash stand



      
          

      
          

      
          

               
          

       

              

                   

               

              

                

      

                         

                         

                         

                         

                         

                         

                             

      
          

      
          

      
          

               
          

       

                         

                         

                         

                         

                         

                         

                        

        

Figure 6. Confusion matrices (%) of MLLMs on the VisNumBench-Synthetic and VisNumBench-Real datasets across different visual

numerical estimation tasks.

out with an average accuracy of 56.54%, achieving near-

optimal results across multiple tasks, as shown in Table 3.

InternVL2.5-38B attained an exceptionally high accuracy

of 83.67% on the quantity task, while LLaVA-v1.6-34B

excelled in the volume task, achieving the highest scores.

Qwen2.5-VL-72B demonstrated relatively balanced perfor-

mance, yielding a suboptimal average accuracy of 53.33%.

Surprisingly, Gemini 1.5 Pro achieved the highest accu-

racy in depth estimation, reaching 64.29%. However, its

overall average accuracy remained unsatisfactory. Other

proprietary models, such as GPT-4o and Gemini 1.5 Flash,

exhibited relatively weaker performance. In general, the

accuracy on VisNumBench-Real is lower than that on

VisNumBench-Synthetic, likely due to the increased com-

plexity and variability of real-world images.

4.1.3. Performance on Different Visual Numerical Esti-

mation Tasks

As we analyze performance across different numerical es-

timation tasks, Figure 6 reveals that in the synthetic sce-

nario, Gemini 2.0 Flash and Qwen2.5-VL-72B achieve the

highest performance across all visual numerical estimation

tasks, particularly in range estimation, value estimation, and

value comparison, where their accuracies consistently ex-

ceed 60%. In contrast, GPT-4o exhibits the lowest per-

formance in all tasks, especially in value comparison and

multiplicative estimation. In the real-world scenario, most

models achieved their best performance in value compari-

son tasks, which are also the easiest for humans. Although

Gemini 2.0 Flash and InternVL2.5-78B continue to perform

well in most tasks, their performance in multiplicative es-

timation has declined compared to the synthetic scenario.

Additionally, GPT-4o continues to perform poorly across

all tasks, particularly in multiplicative estimation and value

comparison, where it falls significantly behind other mod-

els.

Notably, in the multiplicative estimation task, LLaVA-

v1.6-34B outperforms all other models by a significant mar-

gin. This suggests that certain models may be more special-

ized for specific types of tasks, and further fine-tuning could

enhance performance across different tasks.

4.2. Further Analysis

How do math-special models perform on the VisNum-

Bench? To investigate the number sense abilities of math-

special models, we introduce two multimodal mathemati-

cal models: (1) InternVL2-8B-MPO [49], initialized from

InternVL2-8B [8] and fine-tuned on the large-scale multi-

modal reasoning preference dataset MMPR [49], achieving

an accuracy of 65.65% on MathVista; (2) Math-LLaVA-

13B [40], initialized from LLaVA-v1.5-13B and fine-tuned

on the MathV360K [40] dataset. As shown in Figure 7,

InternVL2-8B-MPO achieved a 1.0% improvement in syn-

thetic scenarios and a 0.3% increase in real-world scenarios.

Its enhancements are task-specific rather than universally

effective across different number sense challenges. In con-

trast, Math-LLaVA-13B exhibited a polarized performance

trend: while it improved by 3.7% on the synthetic dataset,

its accuracy declined by 6.9% in real-world scenarios. This

suggests that although the model benefits from training on

synthetic data, it struggles to generalize to the complexity

and variability of real-world number sense tasks. Relying

solely on synthetic data may be insufficient to enhance num-

ber sense capabilities in real-world applications. Additional

strategies, such as incorporating more diverse real-world

training data or refining model architectures, may be nec-

essary to achieve meaningful improvements.

How do the multimodal reasoning models perform?

To examine whether reasoning techniques can enhance
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Figure 7. Improvements brought by multimodal mathematical models (InternVL2-8B-MPO and Math-LLaVA-13B) and multimodal CoT

models (Llama-3.2V-11B-cot and R1-OneVision-7B). Table 9 and Table 10 in the appendix provide detailed results.

Table 4. Comparisons of the performance of models from the

Qwen-VL family and the InternVL family in synthetic and real-

world scenes. Table 11 in the appendix provides detailed results.

Average (Synthetic) Average (Real)

Qwen2-VL-2B 31.85 24.94

Qwen2.5-VL-3B 42.24(↑ +10.39) 42.57(↑ +17.63)

Qwen2-VL-7B 41.25 41.91

Qwen2.5-VL-7B 46.19(↑ +4.94) 41.02(↓ −0.89)

Qwen2-VL-72B 54.20 46.56

Qwen2.5-VL-72B 58.46(↑ +4.26) 53.33(↑ +6.77)

InternVL2-8B 39.56 39.58

InternVL2.5-8B 39.66(↑ +0.10) 40.13(↑ +0.55)

InternVL2-40B 45.50 45.12

InternVL2.5-38B 55.59(↑ +10.09) 52.11(↑ +6.99)

the number sense abilities of MLLMs, we evaluate two

multimodal reasoning models: Llama-3.2V-11B-cot2 [51]

and R1-OneVision-7B3. Llama-3.2V-11B-cot is trained us-

ing LLaVA-o1-100k [51], achieving a 6.2% performance

improvement on MathVista compared to Llama-3.2-11B-

Vision-Instruct [34]. R1-OneVision-7B, trained with a rule-

based reinforcement learning technique, attains an accu-

racy of 44.06% on Mathverse [55]. Accordingly, we as-

sess these models on our benchmark. The results, pre-

sented in Figure 7, indicate that neither Llama-3.2V-11B-

cot nor R1-OneVision-7B achieved the expected perfor-

mance gains. On the contrary, their accuracy dropped

2https://huggingface.co/Xkev/Llama-3.2V-11B-cot
3https://github.com/Fancy-MLLM/R1-Onevision

significantly—except for a modest 1.6% improvement by

Llama-3.2V-11B-cot in synthetic scenarios—especially in

real-world settings. These findings suggest that developing

reasoning techniques specifically tailored for number sense

abilities may be necessary.

What helps improve the performance? To determine

the factors contributing to the improvement of number sense

ability in MLLMs, we evaluate historical models from the

same family over time, specifically the Qwen-VL family

and the InternVL family. The results are presented in Ta-

ble 4. As observed, the performance of the latest models

generally surpasses that of their predecessors. By compar-

ing Qwen2-VL [45] with Qwen2.5-VL [42], as well as In-

ternVL2 with InternVL2.5 [6], we observe improvements

in several aspects: (1) data scale and quality, (2) a more

powerful encoder, (3) model architecture, and (4) training

strategy. These findings suggest that further exploration in

these directions is essential for enhancing the number sense

abilities of MLLMs.

5. Conclusion

In this work, we introduce VisNumBench, a novel bench-

mark designed to evaluate MLLMs on core number sense

abilities that are inadequately addressed by existing evalu-

ation benchmarks. Our assessment of 17 MLLMs uncov-

ers substantial deficiencies in their capacity to demonstrate

human-like number sense. Even the most advanced mod-

els still demonstrate limited numerical sense abilities. Fur-

ther experiments on historical models from the same family

show that to enhance this ability within a short period, more

specialized optimizations in data, training techniques, and

model architecture may be required.
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